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Outline

• Approach
– 2-stage detection
– Serial vs. system combination architectures

• Summary of eval results (CTS only)
• Recent improvements 
• Error analysis
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RT System Overview 

• BBN provides STT + time alignments + speaker labels
• UW feature processing (prosody + lexical)
• UW 2-stage detection of structural MDE

– First: find boundary (between word) events: SUs & IPs
– Second: detect depod and filler words

• Optional (for integrated system), combine UW & BBN 
SU prediction, before depod & filler detection
– SU combination work by Amit Srivastava at BBN
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Two-Stage Detection of Structural MDE

• Detect SUs and IPs together with a decision tree (DT) 
and a hidden event language model (HE-LM)
– Joint detection because SUs & IPs have some similar acoustic 

cues but different language cues
– Possible problems when SU & IP co-occur

• Detect fillers and edits using the transformation-based 
learning (TBL) algorithm
– Presence of an IP is useful information, esp. for edit detection
– If IP is known, then acoustic cues are much less important than 

language cues

SU/IP Detection
(DT and HE-LM)STT+ RT

Filler/depod
Detection

(TBL)
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System Architecture

• Serial Architecture (UW SUs only)

• Combined Architecture (UW+BBN SUs)
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Experimental Paradigm

• Training data
– 417 conversations annotated by LDC using V5 spec (LDC1.3)
– 1086 conversations from disfluency-annotated Switchboard 

Treebank data (using Meteer-mapping from SRI-ICSI)
– Reference transcription only
– Investigation of which combination of data is most useful

• Development data
– 18 Fisher and 18 Swbd conversations, annotated with V5 spec

• Scoring tools: both rt-eval & su/df-eval used, but final 
decisions made based on rt-eval
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Stage 1: Detecting SUs and IPs

• Recognize 4 classes of events: SU, SU-inc, IP, other
• Use decision tree to integrate continuous prosodic cues 

and symbolic lexical 
• Hidden event language model (using SRI LM toolkit)

– Train trigram LM with tokens representing SU/IP inserted in the 
word stream

– During testing, use the LM as a hidden Markov model
• Consider word/event as states and words as observations
• Use a forward-backward dynamic programming algorithm to 

calculate posterior probabilities P(event|words)
• Use hidden event posterior…

– In decision tree as an additional feature, OR
– As a separate score in (linear) combination with the decision 

tree posterior
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Decision Tree Features

• Acoustic-prosodic features
– Average normalized duration over the word and the rhyme of 

the word, silence duration

– F0 statistics (min, max, avg, slope) over a word, normalized by 
speaker statistics and statistics of F0 differences between the 
current and the following word (use SRI F0 processing & 
stylization)

– Energy statistics (min, max, avg) over a word and rhyme, 
normalized by speaker statistics

– Word position in the speaker turn and indicators of speaker 
overlap and start and end of a turn
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Decision Tree Features

• Lexical Features
– Flag indicating whether following words can be fillers
– Posterior probabilities from HE-LM
– Part-of-speech tags, grouped into 15 categories to reduce the 

cost of training
– Indicator of word and grouped POS tag pattern match across a 

word boundary, skipping potential filler words

M2M1+VLM1M1VLM1M2Grouped POS

INPRP+BESVBPPRPVBPEXCCPOS

like …it’sknowyouarethereBut Word

POS match for the boundary after “ are”

10

Electrical Engineering
University of Washington

Decision Tree Prediction Results

• On Dev set, reference transcription
• Using word-based decision tree metric 

– Overall accuracy: 91.1
– Chance: 75.5

• Inc-SU is most difficult category

78.766.1IP

69.736.5ISU

80.481.5SU

Precision (%)Recall (%)Type
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Stage 2: Identifying Edits and Fillers

• After SUs and IPs are marked, use rules to identify edits 
and fillers

• Automatic rule design using Transformation-Based 
Learning (TBL)
– Brill [Computational Linguistics, 1995]
– Key features of this rule-learning algorithm:

• Corpus-based, error-driven automatic learning
• Simple, concise, comprehensible rules

– Useful in many NLP problems, e.g. part-of-speech tagging 
(similar to edit/filler labeling), parsing, spelling correction

– We used the fnTBL toolkit (Ngai and Florian [ACL, 2001])
• Advantage: fast training
• Disadvantage: symbolic but not numeric features
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How TBL Works

• Apply an initial tag to each item in the corpus (baseline predictor)
• Repeat:

– Use templates to generate all possible transformation rules that correct 
at least one error

– Score rules using an objective function 
– Choose the best transformation rule and apply it to the corpus
– Stop when the score of the best rule falls below a threshold

• Need templates that specify allowable rules.
– Rules consist of a triggering environment and a transformation.
– Example: (part-of-speech tagging)

• Template: word_0 word_1 => pos
• Rule:  word_0=table word_1=the => pos=verb
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Current TBL Configuration

• Predicted SUs and IPs are added to the data as special 
“ words”

• Baseline predictor: no disfluency (most common case)
• Rule templates consider:

– Features of the current word and/or neighbors
– Proximity of potential FP/DM/EET terms
– Word/POS matches between current and nearby words, e.g. 

• that IP that   (word match)
• the dog IP the cat   (POS match)

• Objective function: min token error rate

14

Electrical Engineering
University of Washington

Features Used in TBL Stage

• Identity of the word (includes SU/IP)
• POS and GPOS (POS group) of the word  (same as 

decision tree features)
• Flags indicating whether the word is commonly used 

as: filled pause (FP), back channel, explicit edit term 
(EET), and/or discourse marker (DM)

• Flags indicating whether word/POS/GPOS matches the 
word/POS/GPOS that is 1/2/3 positions to its right

• Turn and segment boundary flags (same as decision 
tree features)

• Tag to be learned (FP, EET, DM, depod, and none)



15

Electrical Engineering
University of Washington

Design Questions and Findings

• Which training data to use for stage 1 vs. stage 2,        
i.e. is the Meteer-mapped data useful?
– NO for SU/IP detection (problem for IPs is edit recall)
– YES for edits and fillers (reduces insertions)

• Should we model all IPs or just IPs associated with 
edits? (adding filler IPs in post-processing)
– Using all IPs gave better results in SU/IP detection
– Edit detection is slightly better using only edit IPs

• Should TBL train with hand-labeled or automatically 
predicted SUs and IPs? 
– Small gain from automatically predicted SU/IP

• Should HE-LM be used in the decision tree or as a 
separate knowledge source?
– Mixed results….
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Eval Result: Combined vs. Serial SUs

Combined SUs lead to small gain in 
IP and edit detection

Combined vs. Serial

46.7

88.5

51.0

68.4

46.6

89.3

51.0

69.2

0 20 40 60 80 100

subd

ewd

fwd

ipd

Task

Slot Error Rate (%)

Serial
Combined



17

Electrical Engineering
University of Washington

Eval Result: Details for Serial Case

• Good news: (relatively) good SU performance
• Bad news: 

– Missing a lot of edits and IPs (related)
– Filler accuracy is much worse than other sites (why??)

46.6019.9723.6373.37SU

69.2018.7650.4549.55IP

89.2916.2073.1026.90DEPOD

51.0215.0735.9664.04Filler

%SER%Ins%Del%CorrTask
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Eval Result: Ref vs. STT Hyp

• Note: System processing references is identical to ASR hyp 
system, so fragments are not used in IP detection.

• Observe biggest loss for fillers and IPs

Reference vs. STT
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Improvements since Evals

• Bug fixes:
– Retrained POS tagger with unicased words and with all 

punctuations stripped out
– Fixed a bug in TBL feature processing

• Real improvements:
– Use iterative feature selection to find a more robust set of 

acoustic-prosodic features 
– Trained TBL with predicted SU/IP tags

• Combined HLM and DT models by interpolating scores
– Weighting factor was determined empirically to maximize 

overall accuracy of SU/IP prediction on Dev STT transcription
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Small Gains in Performance

Eval vs. New
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HE-LM in Tree or Interpolated with Tree?

Tree vs. Interpolated (on STT transcription)
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Separating the HE-LM out helps IPs (and 
hence edits), but hurts SUs.

22

Electrical Engineering
University of Washington

Known Problems and Error Analysis

• We never predicted words labeled as both filler and edit 
(due to a bug in fnTBL)
– These words were treated as fillers in TBL training
– May not be a big problem since only 0.5% of all edit and filler 

words in LDC1.3 are both filler and edit words. 
• We never predict boundaries as having both SU and IP

– Treat them as having just SU when training DT, HE-LM, and 
TBL; insert IPs after fillers are detected in the TBL stage

– In LDC1.3, 12.8% of boundaries that contain SU also have IP
– Insignificant for IPs following edits but 38.6% of IPs before 

fillers are affected

• Problems with fillers:
– Most of our filler errors were due to STT errors
– Most non-speech recognizer filler errors involved the words 

“ So”  (at SU start) and “ like” , which are hard problems
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Known Problems and Error Analysis (cont.)

• Fragments:
– In LDC1.3, 17.2% of edit IPs have word fragments occuring before 

them, and 9.9% of depods had just a single fragment. 
– In Dev set, 35.5% of edit IPs are associated with word fragments
– IP detection performance was significantly worse for those IPs 

associated with fragments. 
Percentage of missed IPs on the Dev set:

STT can “ help”  when fragments aren’t explicitly modeled, since the 
fragment is often deleted or recognized as the full word.

51.274.0STT

37.681.7Reference

Other edit IPsIPs after fragmentsTranscription
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Summary

• 2-stage approach: 
– Joint SU/IP detection in decision tree, integrates prosody & 

lexical cues
– TBL predictor for fillers and depods

• Some experiment findings
– Despite problems, the Meteer-mapped data has some value
– Acoustic reasons for fillers to have IPs (better SU/IP detection), 

but using filler IPs in TBL stage hurts filler prediction
– Some gains from SU system combination
– Mixed results on how to integrate LM and prosodic cues

• Future work
– Fix known problems
– Further explore system combination
– Integrate parsing into system
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Extra Slides
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Key Differences Relative to Others

• Compared to SRI’s work
– We modeled and predicted SUs and IPs together; SRI modeled 

them separately
– SRI downsampled training data to deal with the imbalanced data 

and applied bagging techniques in decision tree training
– SRI combined word-based, POS-based and class-based LMs for 

SU detection
– We used LM scores as features in decision tree training; SRI 

interpolated the scores. 
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Key Differences Relative to Others (cont.)

• Compared to UMD
– UMD used TBL with features similar to ours to detect DEPOD 

and fillers. However, they also included prosody-based features 
in TBL:

• Flag indicating whether a pause follows the current word
• Flag indicating whether the word was used more often than 

average by the speaker

• Compared to CU
– CU used word and class based trigram LMs and a decision tree 

trained with prosodic features to detect SUs.
– They combined LM and decision tree scores with lattice tools


